Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(3): 1491-1508, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38377554

RESUMO

A biopolymer-based formulation for robust and active food packaging material was developed. This material consisted of a blend of three biopolymers (guar gum-sodium alginate-i-carrageenan) reinforced by cellulose nanocrystals (CNC) alongside the integration of silver nanoparticles (AgNPs) with varying sizes. The CNC utilized in this process was derived from cloth waste lint (CWL) generated from a household cloth dryer machine. This CNC synthesis underwent a series of solvent treatments to yield the CNC used in the composite. CNC and AgNPs were incorporated into the tribiopolymeric blend matrix to construct a nanocomposite film that showed excellent tensile strength (∼90 MPa). The nanocomposite film also exhibited antimicrobial activity against Escherichia coli ATCC 25922 and Bacillus cereus MTCC 1272. In this report, it was demonstrated that the zone of inhibition against E. coli and B. cereus depends on the variation of size and amount of AgNPs inside the polymeric matrix. The practical applicability of such a film was also demonstrated by applying it to sliced bread and the enhancement of the shelf life of the raped bread was compared with a control. Thus, the guar gum-sodium alginate-i-carrageenan tribiopolymer blend with a cloth waste lint extracted cellulose nanocrystal composite film is antimicrobial, hence, an excellent candidate as an active packaging film.


Assuntos
Anti-Infecciosos , Galactanos , Mananas , Nanopartículas Metálicas , Nanocompostos , Gomas Vegetais , Celulose/química , Carragenina , Nanopartículas Metálicas/química , Alginatos , Prata/farmacologia , Prata/química , Escherichia coli , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Biopolímeros/química , Nanocompostos/química
2.
Arch Microbiol ; 206(2): 65, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227026

RESUMO

Tea, a highly aromatic and globally consumed beverage, is derived from the aqueous infusion of dried leaves of Camellia sinensis (L.) O. Kuntze. Northeast India, encompassing an expansive geographical area between 24° and 27° N latitude and 88° and 95° E longitude, is a significant tea-producing region covering approximately 312,210 hectares. Despite its prominence, this region faces persistent challenges owing to a conducive climate that harbors the prevalence of pests, fungal pathogens, and weeds, necessitating agrochemicals. Helopeltis theivora, Oligonychus coffeae, and Biston suppressaria are prominent among the tea pests in this region. Concurrently, tea plants encounter fungal infections such as blister blight, brown root rot, and Fusarium dieback. The growing demand for safer tea production and the need to reduce pesticide and fertilizer usage has spurred interest in exploring biological control methods. This review focuses on Actinomycetia, which potentially safeguards plants from diseases and pest infestations by producing many bioactive substances. Actinomycetia, which resides in the tea rhizosphere and internal plant tissues, can produce antagonistic secondary metabolites and extracellular enzymes while promoting plant growth. Harnessing the biocontrol potential of Actinomycetia offers a promising solution to enhance tea production, while minimizing reliance on harmful agrochemicals, contributing to a more environmentally conscious and economically viable tea cultivation system.


Assuntos
Actinobacteria , Camellia sinensis , Agroquímicos , Clima , Chá
3.
Int J Biol Macromol ; 259(Pt 1): 129653, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280292

RESUMO

Bio-composites, which can be obtained from the renewable natural resources, are fascinating material for use as sustainable biomaterials with essential properties like biodegradable, bio-compatibility as well cyto-compatibility etc. These properties are useful for bio-medical including wound healing applications. In this study, fibre obtained banana pseudo stem of banana plant, which is otherwise wasted, was used as a material along with chitosan and guar gum to fabricate a banana fibre-biopolymer composite patch. The physiochemical properties of the patches were examined using Fourier Transformed Infra-red spectrophotometer (FT-IR), tensile tester, Scanning Electron Microscope (SEM), contact angle tester, swelling and degradation studies. We further demonstrated that a herbal drug, Nirgundi could be loaded to the patch showed controlled its release at different pHs. The patch had good antibacterial property and supported proliferation of mouse fibroblast cells. The study thus indicates that banana fibre-chitosan-guar gum composite can be developed into an alternative wound healing material.


Assuntos
Quitosana , Galactanos , Mananas , Musa , Gomas Vegetais , Camundongos , Animais , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química
4.
Metabolites ; 13(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623855

RESUMO

Actinomycetia are known for their ability to produce a wide range of bioactive secondary metabolites having significant therapeutic importance. This study aimed to explore the potential of actinomycetia as a source of bioactive compounds with antimicrobial properties against multi-drug-resistant (MDR) clinical pathogens. A total of 65 actinomycetia were isolated from two unexplored forest ecosystems, namely the Pobitora Wildlife Sanctuary (PWS) and the Deepor Beel Wildlife Sanctuary (DBWS), located in the Indo-Burma mega-biodiversity hotspots of northeast India, out of which 19 isolates exhibited significant antimicrobial activity. 16S rRNA gene sequencing was used for the identification and phylogenetic analysis of the 19 potent actinomycetia isolates. The results reveal that the most dominant genus among the isolates was Streptomyces (84.21%), followed by rare actinomycetia genera such as Nocardia, Actinomadura, and Nonomuraea. Furthermore, seventeen of the isolates tested positive for at least one antibiotic biosynthetic gene, specifically type II polyketide synthase (PKS-II) and nonribosomal peptide synthetases (NRPSs). These genes are associated with the production of bioactive compounds with antimicrobial properties. Among the isolated strains, three actinomycetia strains, namely Streptomyces sp. PBR1, Streptomyces sp. PBR36, and Streptomyces sp. DBR11, demonstrated the most potent antimicrobial activity against seven test pathogens. This was determined through in vitro antimicrobial bioassays and the minimum inhibitory concentration (MIC) values of ethyl acetate extracts. Gas chromatography-mass spectrometry (GS-MS) and whole-genome sequencing (WGS) of the three strains revealed a diverse group of bioactive compounds and secondary metabolite biosynthetic gene clusters (smBGCs), respectively, indicating their high therapeutic potential. These findings highlight the potential of these microorganisms to serve as a valuable resource for the discovery and development of novel antibiotics and other therapeutics with high therapeutic potential.

5.
3 Biotech ; 13(7): 257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37405270

RESUMO

The Actinomycetia isolate, MNP32 was isolated from the Manas National Park of Assam, India, located in the Indo-Burma biodiversity hotspot region of Northeast India. Morphological observations and molecular characterization revealed its identity to be Streptomyces sp. with a 99.86% similar to Streptomyces camponoticapitis strain I4-30 through 16S rRNA gene sequencing. The strain exhibited broad-spectrum antimicrobial activity against a wide range of bacterial human pathogens including WHO-listed critical priority pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii. The ethyl acetate extract was found to disrupt the membrane of the test pathogens which was evidenced through scanning electron microscopy, membrane disruption assay and confocal microscopy. Cytotoxicity studies against CC1 hepatocytes demonstrated that EA-MNP32 had a negligible effect on cell viability. Chemical analysis of the bioactive fraction using gas chromatography-mass spectrometry (GC-MS) showed the presence of 2 major chemical compounds that include Phenol, 3,5-bis(1,1-dimethylethyl)- and [1,1'-Biphenyl]-2,3'-diol, 3,4',5,6'-tetrakis(1,1-dimethylethyl)- which have been reported to possess antimicrobial activity. The phenolic hydroxyl groups of these compounds were proposed to interact with the carbonyl group of the cytoplasmic proteins and lipids leading to destabilization and rupture of the cell membrane. These findings highlight the potential of exploring culturable actinobacteria from the microbiologically under-explored forest ecosystem of Northeast India and bioactive compounds from MNP32 which can be beneficial for future antibacterial drug development.

6.
Microbiol Spectr ; : e0348922, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719230

RESUMO

The Actinomycetia isolate PBR11 was isolated from the forest rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate was identified as Streptomyces sp. with 92.91% sequence similarity to their closest type strain, Streptomyces atrovirens NRRL B-16357 DQ026672. The strain demonstrated significant antimicrobial activity against 19 test pathogens, including multidrug-resistant (MDR) clinical isolates and dermatophytes. Phenol, 2,5-bis(1,1-dimethylethyl), is the major chemical compound detected by gas chromatography-mass spectrometry in the ethyl acetate extract of PBR11 (EtAc-PBR11). The presence of the PKS type II gene (type II polyketide synthases) and chitinase gene suggested that it has been involved in the production of antimicrobial compounds. Metabolic profiling of the EtAc-PBR11 was performed by thin-layer chromatography and flash chromatography resulted in the extraction of two bioactive fractions, namely, PBR11Fr-1 and PBR11Fr-2. Liquid chromatography-tandem mass spectrometry analysis of both the fractions demonstrated the presence of significant antimicrobial compounds, including ethambutol. This is the first report on the detection of antituberculosis drug in the bioactive fractions of Streptomyces sp. PBR11. EtAc-PBR11 and PBR11Fr-1 showed the lowest MIC values (>0.097 and >0.048 µg/mL, respectively) against Candida albicans MTCC 227, whereas they showed the highest MIC values (>0.390 and >0.195 µg/mL, respectively) against Escherichia coli ATCC BAA-2469. The effects of PBR11Fr-1 were investigated on the pathogens by using a scanning electron microscope. The results indicated major morphological alterations in the cytoplasmic membrane. PBR11Fr-1 exhibited low cytotoxicity on normal hepatocyte cell line (CC-1) and the percent cell viability started to decline as the concentration increased from 50 µg/mL (87.07% ± 3.22%) to 100 µg/mL (81.26% ± 2.99%). IMPORTANCE Novel antibiotic breakthroughs are urgently required to combat antimicrobial resistance. Actinomycetia are the principal producers of antibiotics. The present study demonstrated the broad-spectrum antimicrobial potential of an Actinomycetia strain Streptomyces sp. strain PBR11 isolated from the PWS of Assam, India, which represents diverse, poorly screened habitats for novel microorganisms. The strain displayed 92.4% sequence similarity with genes of the closest type strain, indicating that the strain may represent a novel taxon within the phylum Actinomycetota. The metabolomics studies of EtAc-PBR11 revealed structurally diverse antimicrobial agents, including the detection of the antituberculosis drug ethambutol, in the bioactive fraction of Streptomyces sp. PBR11 for the first time. The PBR11 strain also yielded positive results for the antibiotic synthesis gene and the chitinase gene, both of which are responsible for broad-spectrum antimicrobial activity. This suggests that the untouched forest ecosystems have a tremendous potential to harbor potent actinomycetia for future drug discovery.

7.
J Ethnopharmacol ; 301: 115788, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36223844

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Antidesma acidum Retz, a perennial herb is known for its anti-diabetic potential among the traditional health care providers of the tribal communities of Manipur, India. Scientific validation of the ancient knowledge on traditional use of this plant with the help of modern tools and techniques can promote further research and its use in health care. AIM OF THE STUDY: Type 2 Diabetes (T2D) is a complex metabolic disorder and linked with hyperglycemia occurring from insufficiency in insulin secretion, action, or both. The aim of this study was to scientifically validate the traditional myth behind the uses of this plant material against diabetes. More specifically, it was aimed to determine the effect of methanolic extract of A. acidum leaves and/or any of its bioactive phytochemical(s), in enhancing insulin sensitization and subsequently stimulating the insulin signaling cascade of glucose metabolism. MATERIALS AND METHODS: Methanol was used for extraction from the leaf powder of A. acidum followed by bioactivity guided fractionation and isolation of most active component. Biological evaluation was performed to determine the glucose uptake ability against insulin resistance in skeletal muscle (L6) cells. To understand the detailed mechanism of actions of the purified compound, several molecular biology and structural biology experiments such as Western blot, siRNA transfection assay and molecular docking study were performed. RESULTS AND DISCUSSION: Bioactivity guided isolation of pure compound and spectral data analysis led us to identify the active component as Kaempferol 3-O-rutinoside (KOR) for the first time from the leaf of A. acidum. Over expression of NAD-dependent histone deacetylase, Sirtuin 1 (SIRT1) was observed following KOR treatment. SIRT1 plays an important role in the metabolic pathway and over expression of SIRT implies that it involves in insulin signaling directly or indirectly. Molecular docking and simulation study showed the strong involvement between KOR and SIRT1.Treatment with KOR resulted in significant over expression of SIRT1followed by upregulation of insulin-dependent p-IRS, AKT and AMPK signaling molecules, and stimulation of the GLUT4 translocation, which ultimately enhanced the glucose uptake in sodium palmitate-treated insulin resistant L6 myotubes. Further, the effect of KOR on IRS1, AKT and AMPK phosphorylation, GLUT4 translocation, and glucose uptake was attenuated in SIRT1-knockdown myotubes. CONCLUSION: Overall, the results of this study suggest that Kaempferol 3-O-rutinoside is the active component presents in the leaf of A. acidum which increases glucose consumption by inducing SIRT1 activation and consequently improves insulin sensitization. These results may find future applications in drug discovery research against T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Sirtuína 1 , Humanos , Sirtuína 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Simulação de Acoplamento Molecular , Índia , Fibras Musculares Esqueléticas , Insulina/metabolismo , Glucose/metabolismo , Músculo Esquelético , Transportador de Glucose Tipo 4/metabolismo
8.
J Ethnopharmacol ; 303: 115936, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403743

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Osbeckia nepalensis Hook. f. is an ICMR documented plant well known for its antidiabetic uses among the folk people of Northeast Region of India. In-depth study with scientific substantiation of the plant may uphold the therapeutic potential against the treatment of type 2 diabetes mellitus (T2DM). AIM OF THE STUDY: The present study evaluates the traditionally claimed prophylactic potential of O. nepalensis and its extracts along with the isolated compound taxifolin-3-O-glucoside (TG) against the downregulation of T2DM related hepatic gluconeogenesis through in vitro, in vivo and in silico conditions as a means of ameliorating hyperglycemia. MATERIALS AND METHODS: Antidiabetic potential of O. nepalensis was carried out in both CC1 hepatocytes (in vitro) and STZ-induced diabetic male Wistar rats (in vivo). Enriched bioactive fraction and bioactive molecules were isolated through bioactivity-guided fractionation, yielding two major molecules, taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside. The bioactivity of taxifolin-3-O-glucoside was validated through immunoblotting techniques aided by in silico molecular docking and simulations. RESULTS: Methanolic extract of O. nepalensis and taxifolin-3-O-glucoside (TG) isolated thereof enhanced the uptake of glucose in CC1 hepatocytes and downregulates the gluconeogenic enzymes (G6Pase and PEPCK) and its related transcription factors (FOXO1, HNF4α and PGC1α) through the stimulation of AMPK phosphorylation in in vitro condition. Moreover, in in vivo experiments, the in vitro most active fraction BuSFr1 (consisting of the two active major compounds taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside) exhibited a substantial decrease in elevated blood glucose level and increase the glucose tolerance as well as plasma insulin level. In silico molecular docking and simulations for TG with the protein G6Pase inferred the docking sites and stability and showed taxifolin-3-O-glucoside as more potent and non-toxic as compared to quercitin-3-O-rhamnoside. CONCLUSION: The traditionally claimed antidiabetic effect of O. nepalensis has been proved to be effective in lowering the blood glucose level through in vitro, in vivo and in silico analysis which will pave a way for the development of antidiabetic phytopharmaceutical drugs which can be validated through further clinical studies.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ratos Wistar , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Glicemia/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Glucosídeos/metabolismo , Simulação de Acoplamento Molecular , Hepatócitos , Glucose/metabolismo , Fígado
9.
Front Nutr ; 10: 1304903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192648

RESUMO

Ipomea aquatica, also known as water spinach, is an aquatic non-conventional leafy vegetable and is considered a healthy and seasonal delicacy in ethnic food culture. The study revealed the presence of rich chemical and biochemical composition in I. aquatica and antioxidant activities. Moreover, the plant extracts demonstrated significant DNA damage prevention activity against UV/H2O2-induced oxidative damage. High-resolution mass spectrometric analysis by UPLC-qTOF-MS/MS resulted in the identification of over 65 different compounds and 36 important secondary metabolites. Most of the compounds identified represented polyphenolic compounds, viz. polyphenol glycosides and phenolic acids, followed by alkaloids and terpenoids. A UPLC-DAD method was developed and quantified for 10 different polyphenolic compounds. Out of all the metabolites examined, a significant number of compounds were reported to have various bioactive properties, including antibacterial, antiviral, antitumor, hepatoprotection, and anti-depressant effects. The plant extracts were found to contain various compounds, including euphornin, lucidenic acid, and myricitin glycosides, which possess significant medicinal value. Metabolite analysis utilizing GC-MS revealed the presence of various fatty acids, amino acids, sugars, and organic acids. The analysis revealed the presence of essential unsaturated fatty acids such as α-linolenic acid as well as beneficial substances such as squalene., The evaluation of glycemic control activity was carried out by comprehending the inhibitory potential of α-amylase and α-glucosidase, outlining the kinetics of the inhibition process. The inhibitory activities were compared to those of acarbose and revealed stronger inhibition of α-glucosidase as compared to α-amylase. Furthermore, the mechanism of inhibition was determined using in silico analysis, which involved molecular docking and molecular dynamic simulation of the identified IA phytochemicals complexed with the hydrolase enzymes. The study generates convincing evidence that dietary intake of I. aquatica provides a positive influence on glycemic control along with various health-protective and health-promoting benefits.

10.
Front Plant Sci ; 13: 1058867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570961

RESUMO

Endophytic actinobacteria aid in plant development and disease resistance by boosting nutrient uptake or producing secondary metabolites. For the first time, we investigated the culturable endophytic actinobacteria associated with ten epiphytic orchid species of Assam, India. 51 morphologically distinct actinobacteria were recovered from surface sterilized roots and leaves of orchids and characterized based on different PGP and antifungal traits. According to the 16S rRNA gene sequence, these isolates were divided into six families and eight genera, where Streptomyces was most abundant (n=29, 56.86%), followed by Actinomadura, Nocardia, Nocardiopsis, Nocardioides, Pseudonocardia, Microbacterium, and Mycolicibacterium. Regarding PGP characteristics, 25 (49.01%) isolates demonstrated phosphate solubilization in the range of 61.1±4.4 - 289.7±11.9 µg/ml, whereas 27 (52.94%) isolates biosynthesized IAA in the range of 4.0 ± 0.08 - 43.8 ± 0.2 µg/ml, and 35 (68.62%) isolates generated ammonia in the range of 0.9 ± 0.1 - 5.9 ± 0.2 µmol/ml. These isolates also produced extracellular enzymes, viz. protease (43.13%), cellulase (23.52%), pectinase (21.56%), ACC deaminase (27.45%), and chitinase (37.25%). Out of 51 isolates, 27 (52.94%) showed antagonism against at least one test phytopathogen. In molecular screening, most isolates with antifungal and chitinase producing traits revealed the presence of 18 family chitinase genes. Two actinobacterial endophytes, Streptomyces sp. VCLA3 and Streptomyces sp. RVRA7 were ranked as the best strains based on PGP and antifungal activity on bonitur scale. GC-MS examination of ethyl acetate extract of these potent strains displayed antimicrobial compound phenol, 2,4-bis-(1,1-dimethylethyl) as the major metabolite along with other antifungal and plant growth beneficial bioactive chemicals. SEM analysis of fungal pathogen F. oxysporum (MTCC 4633) affected by Streptomyces sp. VCLA3 revealed significant destruction in the spore structure. An in vivo plant growth promotion experiment with VCLA3 and RVRA7 on chili plants exhibited statistically significant (p<0.05) improvements in all of the evaluated vegetative parameters compared to the control. Our research thus gives insight into the diversity, composition, and functional significance of endophytic actinobacteria associated with orchids. This research demonstrates that isolates with multiple plant development and broad-spectrum antifungal properties are beneficial for plant growth. They may provide a viable alternative to chemical fertilizers and pesticides and a sustainable solution for chemical inputs in agriculture.

11.
Front Plant Sci ; 13: 989794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438109

RESUMO

Endophytic microbes are vital for nutrient solubilization and uptake, growth, and survival of plants. Here, 88 endophytic actinobacteria (EnA) associated with five tea clones were isolated, assessed for their diversity, plant growth promoting (PGP), and biocontrol traits, and then used as an inoculant for PGP and disease control in host and non-host plants. Polyphasic methods, including phenotypic and genotypic characteristics led to their identification as Streptomyces, Microbacterium, Curtobacterium, Janibacter, Rhodococcus, Nocardia, Gordonia, Nocardiopsis, and Kribbella. Out of 88 isolates, 35 (39.77%) showed antagonistic activity in vitro against major fungal pathogens, viz. Fusarium oxysporum, Rhizoctonia solani, Exobasidium vexans, Poria hypobrunnea, Phellinus lamaensis, and Nigrospora sphaerica. Regarding PGP activities, the percentage of isolates that produced indole acetic acid, siderophore, and ammonia, as well as P-solubilisation and nitrogen fixation, were 67.05, 75, 80.68, 27.27, 57.95, respectively. A total of 51 and 42 isolates showed chitinase and 1-aminocyclopropane-1-carboxylic acid deaminase activity, respectively. Further, two potent Streptomyces strains KA12 and MA34, selected based on the bonitur scale, were screened for biofilm formation ability and tested in vivo under nursery conditions. Confocal laser scanning microscopy and the crystal violet staining technique revealed that these Streptomyces strains can form biofilms, indicating the potential for plant colonization. In the nursery experiment, they significantly enhanced the shoot and root biomass, shoot and root length, and leaf number in host tea plants. Additionally, treatment of tomato seeds by KA12 suppressed the growth of fungal pathogen Fusarium oxysporum, increased seed germination, and improved root architecture, demonstrating its ability to be used as a seed biopriming agent. Our results confirm the potential of tea endophytic actinobacterial strains with multifarious beneficial traits to enhance plant growth and suppress fungal pathogens, which may be used as bioinoculant for sustainable agriculture.

12.
Curr Microbiol ; 79(11): 330, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36155858

RESUMO

An increasing number of bacterial pathogens are acquiring resistance to the commonly used antibiotics. This has spurred a global threat leading to a resistance era and has penetrated the consciousness of the common people and the clinicians alike. The delay in discovering new antibiotics has exacerbated the resistance problem, forcing researchers to focus on unconventional antimicrobial therapeutics that differ from conventional antibiotics. Alternative therapies have emerged in recent years, including antimicrobial peptides, phage therapy, efflux pump inhibitors, antibodies, and immunomodulatory agents, which have produced impressive results in both laboratory and in clinical trials. Additionally, ultra-narrow-spectrum therapeutics such as CRISPR-Cas system and peptide nucleic acids aided in the development of sequence-specific antimicrobials. Moreover, combinatorial therapies that combine these new approaches have been efficient enough to get approval for clinical use and have accelerated the discovery of novel combination approaches that enhance the performance of already in-use antibiotics. In this review, we provide an overview of these approaches along with studies that focus on the uncharted microbial territories that have been able to deliver some of the important new antibiotics of recent times. It is hoped that the information gathered in this article will provide an update on the current antibiotic resistance threat and encourage profound research.


Assuntos
Anti-Infecciosos , Ácidos Nucleicos Peptídicos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Humanos , Ácidos Nucleicos Peptídicos/farmacologia
13.
J Appl Microbiol ; 133(4): 2314-2330, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35880359

RESUMO

Tea (Camellia sinensis (L) O. Kuntze) is a long-duration monoculture crop prone to several biotic (fungal diseases and insect pest) and abiotic (nutrient deficiency, drought and salinity) stress that eventually result in extensive annual crop loss. The specific climatic conditions and the perennial nature of the tea crop favour growth limiting abiotic factors, numerous plant pathogenic fungi (PPF) and insect pests. The review focuses on the susceptibility of tea crops to PPF/pests, drought, salinity and nutrient constraints and the potential role of beneficial actinobacteria in promoting tea crop health. The review also focuses on some of the major PPF associated with tea, such as Exobasidium vexans, Pestalotiopsis theae, Colletotrichum acutatum, and pests (Helopeltis theivora). The phylum actinobacteria own a remarkable place in agriculture due to the biosynthesis of bioactive metabolites that assist plant growth by direct nutrient assimilation, phytohormone production, and by indirect aid in plant defence against PPF and pests. The chemical diversity and bioactive significance of actinobacterial metabolites (antibiotics, siderophore, volatile organic compounds, phytohormones) are valuable in the agro-economy. This review explores the recent history of investigations in the role of actinobacteria and its secondary metabolites as a biocontrol agent and proposes a commercial application in tea cultivation.


Assuntos
Actinobacteria , Camellia sinensis , Compostos Orgânicos Voláteis , Animais , Antibacterianos/metabolismo , Bactérias , Camellia sinensis/microbiologia , Insetos , Reguladores de Crescimento de Plantas/metabolismo , Sideróforos/metabolismo , Estresse Fisiológico , Chá , Compostos Orgânicos Voláteis/metabolismo
14.
Front Microbiol ; 12: 738058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659169

RESUMO

Endophytes are well-acknowledged inoculants to promote plant growth, and extensive research has been done in different plants. However, there is a lacuna about the endophytes associated with tea clones and their benefit to promote plant growth. The present study focuses on isolating and characterizing the beneficial endophytic bacteria (EnB) prevalent in commercially important tea clones cultivated in North Eastern India as plant growth promoters. Diversity of culturable EnB microbiome, in vitro traits for plant growth promotion (PGP), and applicability of potent isolates as bioinoculant for in vivo PGP abilities have been assessed in the present study. A total of 106 EnB identified as members of phyla Proteobacteria, Firmicutes, and Actinobacteria were related to 22 different genera and six major clusters. Regarding PGP traits, the percentage of isolates positive for the production of indole acetic acid, phosphate solubilization, nitrogen fixation siderophore, ammonia, and 1-aminocyclopropane-1-carboxylic acid deaminase production were 86.8, 28.3, 78.3, 30.2, 95.3, and 87.7, respectively. In total, 34.0, 52.8, and 17.0% of EnB showed notable production of hydrolytic enzymes like cellulase, protease, and amylase, respectively. Additionally, based on the bonitur score, the top two isolates K96 identified as Stenotrophomonas sp. and M45 identified as Pseudomonas sp. were evaluated for biofilm formation, motility, and in vivo plant growth promoting activity. Results suggested strong biofilm formation and motility in K96 and M45 which may attribute to the colonization of the strains in the plants. Further in vivo plant growth promotion experiment suggested sturdy efficacy of the K96 and M45 as plant growth promoters in nursery condition in commercial tea clones Tocklai vegetative (TV) TV22 and TV26. Thus, this study emphasizes the opportunity of commercialization of the selected isolates for sustainable development of tea and other crops.

15.
BMC Microbiol ; 21(1): 216, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34275448

RESUMO

BACKGROUND: Rhizosphere soil is a crucial niche for the diverse beneficial microbial communities in plant-microbe interactions. This study explores the antagonistic potential and diversity of the rhizosphere soil bacteria from commercial tea estates of Assam, India which comes under the Indo-Burma mega-biodiversity hotspot. Rhizosphere soil samples were collected from six different tea estates to isolate the bacteria. The bacterial isolates were subjected to evaluate for the antagonistic activity against fungal pathogens. The potential isolates were investigated for chitinase production and the presence of chitinase gene. The bacterial genetic diversity was studied by Amplified Ribosomal DNA Restriction Analysis (ARDRA) and BOX-PCR fingerprinting. RESULTS: A total of 217 rhizobacteria were isolated from tea rhizosphere soil, out of which 50 isolates exhibited the potential antagonistic activity against fungal pathogens. Among them, 12 isolates showed extracellular chitinase activity and the presence of chitinase genes. The chitinase genes were sequenced and the analysis of the sequences was performed by using PDB protein databank at the amino acid level. It showed the presence of ChiA and ChiA74 gene in the 6 most potent isolates which are involved in the hydrolysis of chitin. These isolates also exhibited antagonistic activity against all tested fungal pathogens. The diversity of 50 antagonistic bacterial isolates were analyzed through ARDRA and BOX-PCR fingerprinting. Diversity analysis and molecular identification of the rhizosphere isolates revealed that these antagonistic isolates predominantly belonged to the genus Bacillus followed by Enterobacter, Serratia, Lysinibacillus, Pseudomonas, and Burkholderia. CONCLUSION: The present study establishes that rhizobacteria isolated from the poorly explored tea rhizosphere soil could be a rich reservoir for the investigation of potential antagonistic bacterial candidates for sustainable agricultural and industrial applications.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Camellia sinensis/microbiologia , Antifúngicos/metabolismo , Bactérias/classificação , Bactérias/genética , Índia , Rizosfera , Microbiologia do Solo
16.
BMC Genomics ; 22(1): 336, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971818

RESUMO

BACKGROUND: Our understanding of genome regulation is ever-evolving with the continuous discovery of new modes of gene regulation, and transcriptomic studies of mammalian genomes have revealed the presence of a considerable population of non-coding RNA molecules among the transcripts expressed. One such non-coding RNA molecule is long non-coding RNA (lncRNA). However, the function of lncRNAs in gene regulation is not well understood; moreover, finding conserved lncRNA across species is a challenging task. Therefore, we propose a novel approach to identify conserved lncRNAs and functionally annotate these molecules. RESULTS: In this study, we exploited existing myogenic transcriptome data and identified conserved lncRNAs in mice and humans. We identified the lncRNAs expressing differentially between the early and later stages of muscle development. Differential expression of these lncRNAs was confirmed experimentally in cultured mouse muscle C2C12 cells. We utilized the three-dimensional architecture of the genome and identified topologically associated domains for these lncRNAs. Additionally, we correlated the expression of genes in domains for functional annotation of these trans-lncRNAs in myogenesis. Using this approach, we identified conserved lncRNAs in myogenesis and functionally annotated them. CONCLUSIONS: With this novel approach, we identified the conserved lncRNAs in myogenesis in humans and mice and functionally annotated them. The method identified a large number of lncRNAs are involved in myogenesis. Further studies are required to investigate the reason for the conservation of the lncRNAs in human and mouse while their sequences are dissimilar. Our approach can be used to identify novel lncRNAs conserved in different species and functionally annotated them.


Assuntos
RNA Longo não Codificante , Animais , Biologia Computacional , Genoma , Camundongos , Desenvolvimento Muscular/genética , RNA Longo não Codificante/genética , Transcriptoma
17.
Microbiol Res ; 240: 126561, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32799070

RESUMO

Diseases in plants are mostly caused by fungi. Fungal interactions with the host can be either biotrophic, necrotrophic or hemibiotrophic. Synergistic polymicrobial interactions have been recently recognized that can also attribute to the occurrence of complex plant diseases. Tea is one of the most widely consumed beverages worldwide, although tea plants are affected by many different diseases causing a significant reduction in global tea production. Blister blight is one such serious and damaging leaf disease of tea. An assessment of blister blight disease was carried out at the tea development center in Umsning, Meghalaya. A considerable number of tea varieties showed characteristic blister blight symptoms that ranged from preliminary yellow spots in the upper leaf surface, matured white sporulating blisters in the lower leaf surface, and delayed brown necrotic lesions throughout the surfaces of the leaves. A total of 42 isolates, 15 from initial, 15 from mature, and 12 from necrotic stages were isolated from the symptomatic leaf samples. Pestalotiopsis and Nigrospora were the two fungi incessantly isolated from the diseased leaves. Colony characteristics that included colony, hyphal, and spore morphologies were examined and mycelial accumulation, sporulation, and sporal germination were determined for all the isolates of Pestalotiopsis and Nigrospora. Molecular analysis based on ITS-RFLP was performed for identification and genetic variability. In vitro pathogenicity assay revealed that Pestalotiopsis spp. and Nigrospora sp. developed distinct characteristics symptoms on greenhouse acclimated TV17 tea clones. To our knowledge, this is the first report of the prevalence of tea blister blight disease in Meghalaya and it is an initial attempt to identify fungal pathogens during different stages of blister blight disease.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Camellia sinensis/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Genes de RNAr , Hifas , Índia , Filogenia , Fatores de Transcrição
18.
Curr Microbiol ; 77(8): 1829-1838, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32350603

RESUMO

The present study investigated the antagonistic and plant growth promoting (PGP) potential of actinobacteria TT3 isolated from tea rhizosphere soil of Tocklai tea germplasm preservation plot, Jorhat, Assam, India. It is a Gram-positive, filamentous with flexible spore chains actinobacteria. The 16S rRNA gene sequencing and phylogenetic analysis indicated that TT3 is closely related to genus Streptomyces for which it was referred to as Streptomyces sp. TT3. It showed very promising PGP traits such as phosphate solubilization, production of indole acetic acid (IAA), siderophore, and ammonia. Evaluation of ethyl acetate extract of TT3 exhibited broad spectrum antagonistic activity against various fungal pathogens. This antagonistic Streptomyces sp. TT3 showed positive for polyketide synthase type II (PKS-II) gene, which was predicted to be involved in the production of actinorhodin as a secondary metabolite pathway product using DoBISCUIT database. Further, the crude ethyl acetate extract of TT3 was analyzed by using GC-MS and revealed the presence of significant chemical constituents responsible for antimicrobial activity. Thus, the present study suggests that actinobacteria isolated from the rhizosphere soil may be explored for the production of bioactive compounds and use as a potential candidate for tea and other agricultural application.


Assuntos
Antibiose , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Streptomyces/fisiologia , Fungos , Filogenia , Rizosfera , Metabolismo Secundário , Streptomyces/classificação
19.
Front Microbiol ; 11: 318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180767

RESUMO

Plant associated endophytic actinobacteria may contribute to plant growth and defense by direct or indirect methods. Our aim was to evaluate the plant growth promoting and antifungal activities of endophytic actinobacteria associated with Camellia spp. and related genera, Eurya to find potent plant growth promoting strains that could be applied in future microbe based bioformulations. We isolated 46 endophytic actinobacteria based on morphological characteristics of the isolates. 16S rRNA gene sequence analysis showed that the strains represented nine actinobacterial genera, Nocardia, Amycolatopsis, Streptomyces, Pseudonocardia, Kribbella, Actinomadura, Microbispora, Rothia and Saccharomonospora. In vitro functional characterization of the isolates for plant growth promoting (PGP) traits revealed many potent PGP isolates such as, SA1 and S43 which showed all the tested PGP traits, i.e., phosphate solubilization, indole-3-acetic acid (IAA), ammonia, siderophore and chitinase production. Out of the 46 endophytic actinobacteria isolates, 21 showed inhibition against atleast one test fungal phytopathogen and, isolates SA25 and SA29 exhibited broad spectrum antifungal activity against all the tested phytopathogens. Most of the endophytic actinobacteria isolates having antifungal activity were positive for the presence of chitinase, NRPS (Non-ribosomal peptides synthetase) or PKS-1 (Polyketide Synthase) gene, suggesting the presence of distinctive mechanisms to inhibit the growth of pathogenic plant fungi. ARDRA (Amplified Ribosomal DNA Restriction analysis) and BOX-PCR fingerprinting analysis of the potent isolates with antagonistic activity grouped the isolates into 5 and 4 separate clusters, respectively. In addition, an assessment using bonitur scale revealed the top ranked isolates based on their PGP and biocontrol traits. Further detection of IAA production by the top ranked actinobacterial isolates namely, SA1, T1LA3 and S85 by using thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) was done. Endophytic actinobacteria isolates, namely, SA1, T1LA3, and SA14 were further tested for their efficacy in promoting the growth of commercial tea clones, namely, TV1, TV9, TV18, and TV22 in nursery conditions. All the endophytic isolates tested showed significant differences (P ≤ 0.05) in terms of plant growth promoting parameters in the treated plants compared to untreated control and may, thus be, deemed as potential candidates for application in bioformulations for tea growth.

20.
Sci Rep ; 10(1): 4104, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139731

RESUMO

Actinobacteria is a goldmine for the discovery of abundant secondary metabolites with diverse biological activities. This study explores antimicrobial biosynthetic potential and diversity of actinobacteria from Pobitora Wildlife Sanctuary and Kaziranga National Park of Assam, India, lying in the Indo-Burma mega-biodiversity hotspot. A total of 107 actinobacteria were isolated, of which 77 exhibited significant antagonistic activity. 24 isolates tested positive for at least one of the polyketide synthase type I, polyketide synthase type II or non-ribosomal peptide synthase genes within their genome. Their secondary metabolite pathway products were predicted to be involved in the production of ansamycin, benzoisochromanequinone, streptogramin using DoBISCUIT database. Molecular identification indicated that these actinobacteria predominantly belonged to genus Streptomyces, followed by Nocardia and Kribbella. 4 strains, viz. Streptomyces sp. PB-79 (GenBank accession no. KU901725; 1313 bp), Streptomyces sp. Kz-28 (GenBank accession no. KY000534; 1378 bp), Streptomyces sp. Kz-32 (GenBank accession no. KY000536; 1377 bp) and Streptomyces sp. Kz-67 (GenBank accession no. KY000540; 1383 bp) showed ~89.5% similarity to the nearest type strain in EzTaxon database and may be considered novel. Streptomyces sp. Kz-24 (GenBank accession no. KY000533; 1367 bp) showed only 96.2% sequence similarity to S. malaysiensis and exhibited minimum inhibitory concentration of 0.024 µg/mL against methicilin resistant Staphylococcus aureus ATCC 43300 and Candida albicans MTCC 227. This study establishes that actinobacteria isolated from the poorly explored Indo-Burma mega-biodiversity hotspot may be an extremely rich reservoir for production of biologically active compounds for human welfare.


Assuntos
Actinobacteria/metabolismo , Anti-Infecciosos/metabolismo , Florestas , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Anti-Infecciosos/farmacologia , Biodiversidade , Índia , Testes de Sensibilidade Microbiana , Peptídeo Sintases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...